7 research outputs found

    A Linear Well-Posed Solution To Recover High-Frequency Information For Super Resolution Image Reconstruction

    No full text
    Multiview super resolution image reconstruction (SRIR) is often cast as a resampling problem by merging non-redundant data from multiple images on a finer grid, while inverting the effect of the camera point spread function (PSF). One main problem with multiview methods is that resampling from nonuniform samples (provided by multiple images) and the inversion of the PSF are highly nonlinear and ill-posed problems. Non-linearity and ill-posedness are typically overcome by linearization and regularization, often through an iterative optimization process, which essentially trade off the very same information (i.e. high frequency) that we want to recover. We propose a different point of view for multiview SRIR that is very much like single-image methods which extrapolate the spectrum of one image selected as reference from among all views. However, for this, the proposed method relies on information provided by all other views, rather than prior constraints as in single-image methods which may not be an accurate source of information. This is made possible by deriving explicit closed-form expressions that define how the local high frequency information that we aim to recover for the reference high resolution image is related to the local low frequency information in the sequence of views. The locality of these expressions due to modeling using wavelets reduces the problem to an exact and linear set of equations that are well-posed and solved algebraically without requiring regularization or interpolation. Results and comparisons with recently published state-of-the-art methods show the superiority of the proposed solution

    Motion Compensation Using Critically Sampled Dwt Subbands For Low-Bitrate Video Coding

    No full text
    In this paper, we propose a novel motion estimation/motion compensation (ME/MC) method for wavelet-based (i.e. in-band) motion compensated temporal filtering (MCTF), with application to low-bitrate video coding. Unlike the conventional in-band MCTF algorithms, which require redundancy to overcome the shift-variance problem of critically sampled (i.e. complete) discrete wavelet transforms (DWT), we perform ME/MC steps directly on DWT coefficients by avoiding the need of shift-invariance. We omit upsampling, inverse-DWT (IDWT), and calculation of redundant DWT coefficients, while achieving arbitrary subpixel accuracy without interpolation, and high video quality even at very low-bitrates, by deriving the exact relationships between DWT subbands of input image sequences. Experimental results demonstrate the accuracy of the proposed method, confirming that our model for ME/MC effectively improves video coding quality

    In-Band Sub-Pixel Registration Of Wavelet-Encoded Images From Sparse Coefficients

    No full text
    Sub-pixel registration is a crucial step for applications such as super-resolution in remote sensing, motion compensation in magnetic resonance imaging, and nondestructive testing in manufacturing, to name a few. Recently, these technologies have been trending towards wavelet-encoded imaging and sparse/compressive sensing. The former plays a crucial role in reducing imaging artifacts, while the latter significantly increases the acquisition speed. In view of these new emerging needs for applications of wavelet-encoded imaging, we propose a sub-pixel registration method that can achieve direct wavelet domain registration from a sparse set of coefficients. We make the following contributions: (i) We devise a method of decoupling scale, rotation, and translation parameters in the Haar wavelet domain, (ii) we derive explicit mathematical expressions that define in-band sub-pixel registration in terms of wavelet coefficients, (iii) using the derived expressions, we propose an approach to achieve in-band sub-pixel registration, avoiding back and forth transformations. (iv) Our solution remains highly accurate even when a sparse set of coefficients are used, which is due to localization of signals in a sparse set of wavelet coefficients. We demonstrate the accuracy of our method, and show that it outperforms the state of the art on simulated and real data, even when the data are sparse
    corecore